Exercises

Exercises#

  1. Show that for any p.s.d. and symmetric matrix \(Q\in\mathbb{R}^{d\times d},\ Q^\top=Q\) the function \(f(\vvec{x})=\vvec{x}^\top Q\vvec{x}\) is convex. Recall that a positive semidefinite matrix (p.s.d.) \(Q\) satisfies \(\vvec{x}^\top Q\vvec{x}\geq 0\) for all \(\vvec{x}\in\mathbb{R}^d.\)

The proof is very similar to the one showing that \(\lVert\vvec{x}\rVert^2=\vvec{x}^\top I\vvec{x}\) is convex. Let \(\alpha\in[0,1]\), then the definition of a convex function

\[f(\alpha\vvec{x}+(1-\alpha)\vvec{z})\leq \alpha f(\vvec{x})+(1-\alpha)f(\vvec{z})\]
is satisfied for the function above if
\[\begin{split} (\alpha\vvec{x}+(1-\alpha)\vvec{z})^\top Q(\alpha\vvec{x}+(1-\alpha)\vvec{z}) &= \alpha^2\vvec{x}^\top Q\vvec{x} +2\alpha(1-\alpha)\vvec{x}^\top Q\vvec{z} +(1-\alpha)^2\vvec{z}^\top Q\vvec{z}\\ &\leq \alpha\vvec{x}^\top Q\vvec{x} +(1-\alpha)\vvec{z}^\top Q\vvec{z}. \end{split}\]
We subtract the terms on the left side of that equation and get
\[\begin{split} \alpha (1-\alpha) \vvec{x}^\top Q\vvec{x} -2\alpha(1-\alpha)\vvec{z}^\top Q\vvec{x}+\alpha(1-\alpha)\vvec{z}^\top Q\vvec{z}&\geq 0\\ \Leftrightarrow \quad \vvec{x}^\top Q\vvec{x} -2\vvec{z}^\top Q\vvec{x}+\vvec{z}^\top Q\vvec{z}&\geq 0\\ \Leftrightarrow \quad (\vvec{x}-\vvec{z})^\top Q(\vvec{x}-\vvec{z})&\geq 0. \end{split}\]
The equation above is always true, because \(Q\) is p.s.d.